Purpose
This study aims to investigate the thermohydrodynamic (THD) and thermoelastohydrodynamic (TEHD) performance of an air-lubricated thrust bearing under different slip conditions, especially the slip length effect.
Design/methodology/approach
In this study, a new modified boundary slip model was established to investigate thrust bearing performance. The THD and TEHD bearing characteristic distribution was analyzed with fluid–thermal–structure interaction approach. The effect of the slip length on the bearing performance was studied using various bearing structure parameters.
Findings
The increased slip length changed the classical feature distribution of the film pressure and temperature. The sacrifice of the bearing load capacity effectively compensated for the aerodynamic thermal effect and friction torque under the slip condition. The TEHD model has a lower film pressure and load capacity than the THD model. However, it also has lower film temperature, lower friction torque and smaller Knudsen number (Kn).
Originality/value
The bearing THD and TEHD performances of the modified boundary slip model were compared with those of a traditional no-slip bearing. The results help to guide the selection of the bearing surface materials and processing technology of rotor and foil, so as to fully control the degree of slip and make use of it.