The motion simulation analysis of the control rod drive mechanism is a typical multi-disciplinary cross-coupling problem covering electromagnetic field, flow field, and dynamic field. Ensuring effective simulation accuracy is an important advance for accurately predicting the reliability of nuclear reactors. In this paper, a multi-disciplinary co-simulation method is proposed based on time unit differentiation, which solves the coupling problem of parameters by micro-element thought. It can avoid affecting the accuracy of simulation results due to the inequality of multi-disciplinary parameters in the co-simulation process. This paper takes the nuclear reactor control rod drive mechanism as the verification object. The multi-disciplinary co-simulation platform in Isight is built based on the co-simulation method. By differentiating the overall process of multidisciplinary co-simulation according to time unit and using the same simulation time interval for each discipline, the Newmark method is used to determine the minimum simulation time integration step of each discipline. The multi-field co-simulation is carried out including electromagnetic field, flow field, gravitational field, and motion field of the driving mechanism in the working process. Through comparison with the actual measurement results, the simulation results have an error within 5%, which is better than existing motion simulation results of driving mechanism.