An inverse scattering transform for the derivative nonlinear Schrödinger equation with nonvanishing boundary conditions is derived by introducing an affine parameter to avoid constructing Riemann sheets. A one-soliton solution simpler than that in the literature is obtained, which is a breather and degenerates to a bright or dark soliton as the discrete eigenvalue becomes purely imaginary. The solution is mapped to that of the modified nonlinear Schrödinger equation by a gaugelike transformation, predicting some sub-picosecond solitons in optical fibers.