2021
DOI: 10.1088/1674-1056/abff2a
|View full text |Cite
|
Sign up to set email alerts
|

Nonlocal advantage of quantum coherence and entanglement of two spins under intrinsic decoherence*

Abstract: We investigate the nonlocal advantage of quantum coherence (NAQC) and entanglement for two spins coupled via the Heisenberg interaction and under the intrinsic decoherence. Solutions of this decoherence model for the initial spin-1/2 and spin-1 maximally entangled states are obtained, based on which we calculate the NAQC and entanglement. In the weak region of magnetic field, the NAQC behaves as a damped oscillation with the time evolves, while the entanglement decays exponentially (behaves as a damped oscilla… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
5

Citation Types

0
7
0

Year Published

2022
2022
2024
2024

Publication Types

Select...
7
1

Relationship

0
8

Authors

Journals

citations
Cited by 14 publications
(7 citation statements)
references
References 61 publications
0
7
0
Order By: Relevance
“…The last decade has been very prolific in this field we want to board, the community has taken the task to study a vast amount of systems that can experience intrinsic decoherence. We can see research on quantification of non-classicality [9], qubits for quantum information processing [10], bipolar spin systems [11], quantum dot correlations [12], Heisenberg XYZ spin chains, quantum-memory-assisted two-qubit, and the temporal evolution of quantum correlations [13,14,15], quantum-memory-assisted entropic uncertainty, mixedness, and entanglement dynamics in two-qubit system [16], symmetric spin-orbit model [17], two-qubit quantum Fisher information [18], two-qubit maximally entangled Bell states [19], trapped ions [20], isolated Heisenber and Aubry-André spin models [21], two coupled quantum dots [22], N-level atomic system [23], two-coupled qubit two-level cavity [24], twolevel atom [25], state transfer in spin channels [26], Heisenber anisotropic interaction [27], nonlocal advantage of quantum coherence [28], qutrit teleportation [29], and quantum dense coding [30]. When we look at specific examples related optomechanical systems, we find notable works on Jaynes-Cummings under intrinsic decoherence [31,32,33], bimodal multiquanta Jaynes-Cummings [34], entanglement two Tavis-Cummings (no-RWA JC) [35], and ultra-strong coupled harmonic oscillator in cavities [36].…”
Section: Introductionmentioning
confidence: 99%
“…The last decade has been very prolific in this field we want to board, the community has taken the task to study a vast amount of systems that can experience intrinsic decoherence. We can see research on quantification of non-classicality [9], qubits for quantum information processing [10], bipolar spin systems [11], quantum dot correlations [12], Heisenberg XYZ spin chains, quantum-memory-assisted two-qubit, and the temporal evolution of quantum correlations [13,14,15], quantum-memory-assisted entropic uncertainty, mixedness, and entanglement dynamics in two-qubit system [16], symmetric spin-orbit model [17], two-qubit quantum Fisher information [18], two-qubit maximally entangled Bell states [19], trapped ions [20], isolated Heisenber and Aubry-André spin models [21], two coupled quantum dots [22], N-level atomic system [23], two-coupled qubit two-level cavity [24], twolevel atom [25], state transfer in spin channels [26], Heisenber anisotropic interaction [27], nonlocal advantage of quantum coherence [28], qutrit teleportation [29], and quantum dense coding [30]. When we look at specific examples related optomechanical systems, we find notable works on Jaynes-Cummings under intrinsic decoherence [31,32,33], bimodal multiquanta Jaynes-Cummings [34], entanglement two Tavis-Cummings (no-RWA JC) [35], and ultra-strong coupled harmonic oscillator in cavities [36].…”
Section: Introductionmentioning
confidence: 99%
“…By arising from quantum state superposition, quantum coherence is one of the central concepts for quantum information processing 26 , 27 . It has been widely used as an important resource for quantum technology 28 32 , with further relevant applications including quantum optics 26 , quantum information science 33 , 34 , thermodynamics 35 , 36 , and so forth 37 39 . Besides, the quantum coherence could be pleasantly linked to quantum entanglement and entropic uncertainty relations 40 47 , and discord-like correlations as well 48 .…”
Section: Introductionmentioning
confidence: 99%
“…Fortunately, Baumgratz et al [ 10 ] have proposed a suitable context for the theory of quantum coherence considering the definition of incoherent operations, incoherent states, and arbitrary valid coherence measures. A variety of research has been conducted in this field, with some focusing particularly on the features of certain coherence measures [ 11 , 12 , 13 , 14 , 15 , 16 , 17 ] and more recently by exploiting the quantum uncertainty relation by using quantum coherence [ 18 , 19 , 20 , 21 ].…”
Section: Introductionmentioning
confidence: 99%