Experimental demonstrations of tunable correlation effects in magic-angle twisted bilayer graphene have put two-dimensional moiré quantum materials at the forefront of condensed-matter research. Other twisted few-layer graphitic structures, boron-nitride, and homo- or hetero-stacks of transition metal dichalcogenides (TMDs) have further enriched the opportunities for analysis and utilization of correlations in these systems. Recent experiments within the latter material class confirmed the relevance of many-body interactions and demonstrated the importance of their extended range. Since the interaction, its range, and the filling can be tuned experimentally by twist angle, substrate engineering and gating, we here explore Fermi surface instabilities and resulting phases of matter of hetero-bilayer TMDs. Using an unbiased renormalization group approach, we establish in particular that hetero-bilayer TMDs are platforms to realize topological superconductivity with winding number $$| {{{\mathcal{N}}}}| =4$$
∣
N
∣
=
4
. We show that this state reflects in pronounced experimental signatures, such as distinct quantum Hall features.