When non-magnetic impurity immerses in Fermi sea, a regular modulation of charge density around impurity will appear and such phenomena is called Friedel oscillation (FO). Although both Luttinger liquid and Landau Fermi liquid show such characteristic oscillation, FO in generic non-Fermi liquid (NFL) phase is still largely unknown. Here, we show that FO indeed exists in NFL state of an exactly solvable model, i.e. the Hatsugai-Kohmoto model which has been intensively explored in recent years. Combining T-matrix approximation and linear-response-theory, an interesting picture emerges, if two interaction-induced quasi-particles bands in NFL are partially occupied, FO in this situation is determined by a novel structure in momentum space, i.e. the 'average Fermi surface' (average over two quasi-particle Fermi surface), which highlights the inter-band particle-hole excitation. We hope our study here provides a counterintuitive example in which FO with Fermi surface coexists with NFL quasi-particle, and it may be useful to detect hidden 'average Fermi surface' structure in other correlated electron systems.