When fitting archaeological artifacts, one would like to have a representation that simplifies fragments while preserving their complementarity. In this paper, we propose to employ the scale-spaces of mathematical morphology to hierarchically simplify potentially fitting fracture surfaces. We study the masking effect when morphological operations are applied to selected subsets of objects. Since fitting locally depends on the complementarity of fractures only, we introduce ‘Boundary Morphology’ on surfaces rather than volumes. Moreover, demonstrating the Lipschitz nature of the terracotta fractures informs our novel extrusion method to compute both closing and opening operations simultaneously. We also show that in this proposed representation the effects of abrasion and uncertainty are naturally bounded, justifying the morphological approach. This work is an extension of our contribution earlier published in the proceedings of ISMM2019 [10].