The accurate prediction of reaction mechanisms in heterogeneous (surface) catalysis is one of the central challenges in computational chemistry. Quantum Monte Carlo methods�Diffusion Monte Carlo (DMC) in particular�are being recognized as higher-accuracy, albeit more computationally expensive, alternatives to Density Functional Theory (DFT) for energy predictions of catalytic systems. A major computational bottleneck in the broader adoption of DMC for catalysis is the need to perform finitesize extrapolations by simulating increasingly large periodic cells (supercells) to eliminate many-body finite-size effects and obtain energies in the thermodynamic limit. Here, we show that it is possible to significantly reduce this computational cost by leveraging the cancellation of many-body finite-size errors that accompanies the evaluation of energy differences when calculating quantities like adsorption (binding) energies and mapping potential energy surfaces. We analyze the cancellation and convergence of many-body finite-size errors in two well-known adsorbate/slab systems, H 2 O/LiH(001) and CO/Pt(111). Based on this analysis, we identify strategies for obtaining binding energies in the thermodynamic limit that optimally utilize error cancellation to balance accuracy and computational efficiency. Using one such strategy, we then predict the correct order of adsorption site preference on CO/Pt(111), a challenging problem for a wide range of density functionals. Our accurate and inexpensive DMC calculations are found to unambiguously recover the top > bridge > hollow site order, in agreement with experimental observations. We proceed to use this DMC method to map the potential energy surface of CO hopping between Pt(111) adsorption sites. This reveals the existence of an L-shaped top−bridge−hollow diffusion trajectory characterized by energy barriers that provide an additional kinetic justification for experimental observations of CO/Pt(111) adsorption. Overall, this work demonstrates that it is routinely possible to achieve orderof-magnitude speedups and memory savings in DMC calculations by taking advantage of error cancellation in the calculation of energy differences that are ubiquitous in heterogeneous catalysis and surface chemistry more broadly.