Instead of the usual asymptotic passage from quantum mechanics to classical mechanics when a parameter tended to infinity, a sharp boundary is obtained for the domain of existence of classical reality. The last is treated as separable empirical reality following d'Espagnat, described by a mathematical superstructure over quantum dynamics for the universal wave function. Being empirical, this reality is constructed in terms of both fundamental notions and characteristics of observers. It is presupposed that considered observers perceive the world as a system of collective degrees of freedom that are inherently dissipative because of interaction with thermal degrees of freedom. Relevant problems of foundation of statistical physics are considered. A feasible example is given of a macroscopic system not admitting such classical reality.The article contains a concise survey of some relevant domains: quantum and classical Bell-type inequalities; universal wave function; approaches to quantum description of macroscopic world, with emphasis on dissipation; spontaneous reduction models; experimental tests of the universal validity of the quantum theory.