The normalized maximum likelihood (NML) is a recent penalized likelihood that has properties that justify defining the amount of discrimination information (DI) in the data supporting an alternative hypothesis over a null hypothesis as the logarithm of an NML ratio, namely, the alternative hypothesis NML divided by the null hypothesis NML. The resulting DI, like the Bayes factor but unlike the P‐value, measures the strength of evidence for an alternative hypothesis over a null hypothesis such that the probability of misleading evidence vanishes asymptotically under weak regularity conditions and such that evidence can support a simple null hypothesis. Instead of requiring a prior distribution, the DI satisfies a worst‐case minimax prediction criterion. Replacing a (possibly pseudo‐) likelihood function with its weighted counterpart extends the scope of the DI to models for which the unweighted NML is undefined. The likelihood weights leverage side information, either in data associated with comparisons other than the comparison at hand or in the parameter value of a simple null hypothesis. Two case studies, one involving multiple populations and the other involving multiple biological features, indicate that the DI is robust to the type of side information used when that information is assigned the weight of a single observation. Such robustness suggests that very little adjustment for multiple comparisons is warranted if the sample size is at least moderate. The Canadian Journal of Statistics 39: 610–631; 2011. © 2011 Statistical Society of Canada