Abstract:Existing methods for estimation of dynamic treatment regimes are mostly limited to intention-to-treat analyses—which estimate the effect of randomization to a particular treatment regime without considering the compliance behavior of patients. In this article, we propose a novel nonparametric Bayesian Q-learning approach to construct optimal sequential treatment regimes that adjust for partial compliance. We consider the popular potential compliance framework, where some potential compliances are latent and ne… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.