Abstract:We consider statistical models where functional data are artificially contaminated by independent Wiener processes in order to satisfy privacy constraints. We show that the corrupted observations have a Wiener density which determines the distribution of the original functional random variables, masked near the origin, uniquely, and we construct a nonparametric estimator of that density. We derive an upper bound for its mean integrated squared error which has a polynomial convergence rate, and we establish an … Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.