Suppose that a finite population consists of N distinct units. Associated with the ith unit is a polychotomous response vector, d i , and a vector of auxiliary variable x i . The values x i 's are known for the entire population but d i 's are known only for the units selected in the sample. The problem is to estimate the finite population proportion vector P . One of the fundamental questions in finite population sampling is how to make use of the complete auxiliary information effectively at the estimation stage. In this article a predictive estimator is proposed which incorporates the auxiliary information at the estimation stage by invoking a superpopulation model. However, the use of such estimators is often criticized since the working superpopulation model may not be correct. To protect the predictive estimator from the possible model failure, a nonparametric regression model is considered in the superpopulation. The asymptotic properties of the proposed estimator are derived and also a bootstrapbased hybrid re-sampling method for estimating the variance of the proposed estimator is developed. Results of a simulation study are reported on the performances of the predictive estimator and its re-sampling-based variance estimator from the modelbased viewpoint. Finally, a data survey related to the opinions of 686 individuals on the cause of addiction is used for an empirical study to investigate the performance of the nonparametric predictive estimator from the design-based viewpoint.