Abstract:We study statistical and algorithmic aspects of using hypergraphons, that are limits of large hypergraphs, for modeling higher-order interactions. Although hypergraphons are extremely powerful from a modeling perspective, we consider a restricted class of Simple Lipschitz Hypergraphons (SLH), that are amenable to practically efficient estimation. We also provide rates of convergence for our estimator that are optimal for the class of SLH. Simulation results are provided to corroborate the theory.
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.