Partitioning cluster algorithms have proven to be powerful tools for data-driven integration of large geoscientific databases. We used fuzzy Gustafson-Kessel cluster analysis to integrate Landsat imagery, airborne radiometric, and regional geochemical data to aid in the interpretation of a multimethod database. The survey area extends over [Formula: see text] and is located in the Northern Cape Province, South Africa. We carefully selected five variables for cluster analysis to avoid the clustering results being dominated by spatially high-correlated data sets that were present in our database. Unlike other, more popular cluster algorithms, such as k-means or fuzzy c-means, the Gustafson-Kessel algorithm requires no preclustering data processing, such as scaling or adjustment of histographic data distributions. The outcome of cluster analysis was a classified map that delineates prominent near-to-surface structures. To add value to the classified map, we compared the detected structures to mapped geology and additional geophysical ground-truthing data. We were able to associate the structures detected by cluster analysis to geophysical and geological information thus obtaining a pseudolithology map. The latter outlined an area with increased mineral potential where manganese mineralization, i.e., psilomelane, had been located.