Inspired by the recent experiment of Hamsen et al. [Phys. Rev. Lett. 118, 133604 (2017)], which demonstrated two-photon blockade in a driven nonlinear system (composed of a harmonic cavity with a driven atom), we show that two-photon blockade and other nonstandard types of photonblockade and photon-induced tunneling can be generated in a driven harmonic cavity without an atom or any other kind of nonlinearity, but instead coupled to a nonlinear (i.e., squeezed) reservoir. We also simulate these single-and two-photon effects with squeezed coherent states and displaced squeezed thermal states.