The recent surge of interest in temporal modulation schemes to induce magnet-free nonreciprocity has inspired several exciting opportunities for photonic technology. Here, we investigate a scheme to realize free-space isolators and highly non-reciprocal mirrors with weak modulation imparted by an acoustic wave. Conventional optical mirrors are reciprocal: in a given plane of incidence, reflection is independent of the sign of the angle of incidence, which enables two people to simultaneously look at each other through their reflection. In contrast, we propose a strategy to dramatically break this symmetry by exploiting resonant interactions between a travelling acoustic wave and highly resonant guided optical modes, inducing total reflection of an optical beam at a given angle, and no reflection at the negative angle. Different from conventional acousto-optic isolators, which are based on non-resonant frequency conversion and filtering, our proposal operates at the frequency of the optical signal by tailoring the resonant properties of the structure as well as the acoustic wave frequency and intensity, enabling 50 dB isolation with