n Australia, prostate cancer is, after skin cancer, the most common cancer diagnosed, and it is second only to lung cancer as a cause of cancer-related deaths. [1][2][3][4] In 2005, prostate cancer was the most prevalent cancer for Australian men, accounting for over 29% of all cancer diagnoses. 2 A major clinical treatment for prostate cancer is external-beam radiation therapy (EBRT). Computed tomography (CT) scans are used to provide the required electron density information for radiation therapy dose planning. However, magnetic resonance imaging (MRI) gives superior soft-tissue contrast for visualising the prostate and determining target volume. Here, we describe the development of an efficient, alternative planning method using MRI only for both organ delineation and dose calculation; "pseudo-CT scans" created from the MRI scans are used for dose planning.
Standard treatment planning for EBRTIn EBRT for prostate cancer, high-energy x-ray beams from multiple directions deposit energy (dose) within the tumour (prostate) to destroy cancer cells. The standard process for EBRT treatment planning is shown in Box 1(A). The first step is patient imaging (a CT scan sometimes combined with MRI). The treatment targets (the prostate and sometimes the seminal vesicles) and important normal tissues (the rectum, bladder, and femoral heads) are then manually defined from the scans (Box 2). Modern radiotherapy machines offer improved treatment accuracy through better visualisation and the correction of errors in patient setup, making target delineation the most significant uncertainty in radiotherapy planning.In standard treatment planning, if MRI is used for visualising the prostate, then the scans from MRI and CT are aligned to transfer the structure contours defined by MRI to the CT scans for accurate dose calculation. The defined prostate volume is then expanded to become the larger, planning target volume for treatment. This allows for uncertainties in delineation and patient setup, and for prostate movement. The next step is the use of computer planning tools to determine the directions, strengths and shapes of the treatment beams used to deliver the prescribed dose to the defined target, while minimising the dose to normal tissues. Finally, the patient is carefully positioned and the treatment is delivered. The optimal way to align the patient for treatment is to use small implanted fiducial markers in the prostate. These are visible under x-ray imaging and show the precise position of the prostate within the body. Image guidance is used to align the treatment target each day for the entire radiotherapy course.CT v MRI for radiation therapy planning CT scans are acquired using low-energy x-ray beams. An image is created, with each pixel value assigned a CT number. This number can be easily related by a calibration process to the density of electrons within the tissues. The CT scan converted to electron densities can then be used to calculate the dose to be delivered to a patient from a radiotherapy x-ray beam. Energy i...