1997
DOI: 10.1109/91.554447
|View full text |Cite
|
Sign up to set email alerts
|

Nonsingleton fuzzy logic systems: theory and application

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2
1

Citation Types

0
78
0
8

Year Published

1999
1999
2023
2023

Publication Types

Select...
4
4

Relationship

0
8

Authors

Journals

citations
Cited by 141 publications
(86 citation statements)
references
References 30 publications
0
78
0
8
Order By: Relevance
“…As it was well-posed in [10], nonsingleton fuzzy systems are especially useful in cases where the available training data, or the input data to the fuzzy logic system, are corrupted by noise. Conceptually, the nonsingleton fuzzifier implies that the given input value is the most likely value to be the correct one from all the values in its immediate neighborhood; however, because the input is corrupted by noise, neighboring points are also likely to be the correct values, but to a lesser degree.…”
Section: Fuzzy Systems: Important Issuesmentioning
confidence: 99%
See 1 more Smart Citation
“…As it was well-posed in [10], nonsingleton fuzzy systems are especially useful in cases where the available training data, or the input data to the fuzzy logic system, are corrupted by noise. Conceptually, the nonsingleton fuzzifier implies that the given input value is the most likely value to be the correct one from all the values in its immediate neighborhood; however, because the input is corrupted by noise, neighboring points are also likely to be the correct values, but to a lesser degree.…”
Section: Fuzzy Systems: Important Issuesmentioning
confidence: 99%
“…If we now assume nonsingleton fuzzification, Gaussian membership functions, max-product composition, product implication, height defuzzification, Gaussian membership functions modeling the uncertainty of the input data and fuzzy rules and ⋆, a t-norm named product of a nonsingleton type-1 FS [10], then the output of this normalized nonsigleton fuzzy equalizer (NONFE) is given by [6] f ns (y(n)) =…”
Section: Fuzzy Systems: Important Issuesmentioning
confidence: 99%
“…The uncertainty affecting an actual value of a given parameter can be modeled using a fuzzy set [4], that can in turn be used as input to the decision support system (DSS), instead of feeding a singleton fuzzy set that would disregard the available information about the incertainty. This approach follows the same principle as applied in nonsingleton fuzzy logic systems, where a non-singleton fuzzy set is used to model input uncertainty as part of a traditional fuzzy logic inference model.…”
Section: Introductionmentioning
confidence: 99%
“…A função de pertinência referente à fuzzificação singleton é * ( ) = 1 [18]. 8 O fuzzificador mais comum na literatura FLS é o fuzzificador singleton [18,131], que transforma o valor crisp em um conjunto fuzzy singleton, cuja função de pertinência, * ( ), é igual a um para = , e igual a zero para ≠ . (Ou seja, a função de pertinência tem valor diferente de zero em apenas um ponto do universo de discurso, no seu suporte.)…”
Section: Modelos Fuzzy No Contexto De Previsões Intervalaresunclassified
“…(Ou seja, a função de pertinência tem valor diferente de zero em apenas um ponto do universo de discurso, no seu suporte.) O fuzzificador singleton é simples, e de fácil implementação, mas não é o mais adequado para situações em que os dados são corrompidos por ruídos [131]. Quando os dados são ruidosos, o fuzzificador nonsingleton é mais adequado para uso.…”
Section: Modelos Fuzzy No Contexto De Previsões Intervalaresunclassified