2008
DOI: 10.1007/s10509-008-9887-3
|View full text |Cite
|
Sign up to set email alerts
|

Nonsingular charged analogues of Schwarzschild’s interior solution

Abstract: The problem of finding nonsingular charged analogue of Schwarzschild's interior solutions has been reduced to that of finding a monotonically decreasing function f . The models are discussed in generality by imposing reality condition on f . It is shown that the physical solutions are possible only for surface density to central density ratio greater than or equal to 2/3 i.e. ρ a ρ 0 ≥ 2/3. The unphysical nature of solutions with linear equation state has been proved. A generalization procedure has been utiliz… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
4
1

Citation Types

0
18
0

Year Published

2010
2010
2015
2015

Publication Types

Select...
8

Relationship

7
1

Authors

Journals

citations
Cited by 19 publications
(18 citation statements)
references
References 20 publications
0
18
0
Order By: Relevance
“…Known applicable analytic solutions include [4,5,22]: In contrast, as far the literature is concerned known to the present authors, the charged analogs of Tolman's models (V-VI) obtained in [95][96][97][98][99][100][101] are not physically viable in the description of compact astrophysical objects as regards the infinite values of the central density and pressure. Though the Schwarzschild constant density solution is physically unrealistic, the charged analogs, obtained in [56,[102][103][104], and the charged analog of the Matese and Whitman solution, obtained in [105], may be relevant in the description of self-bound electrically charged strange quark stars. Charged analogs of the Tolman IV and VII models [106][107][108]), as the neutral ones, exhibit the physical features required for the construction of a physically realizable relativistic compact stellar structure.…”
Section: Introductionmentioning
confidence: 98%
“…Known applicable analytic solutions include [4,5,22]: In contrast, as far the literature is concerned known to the present authors, the charged analogs of Tolman's models (V-VI) obtained in [95][96][97][98][99][100][101] are not physically viable in the description of compact astrophysical objects as regards the infinite values of the central density and pressure. Though the Schwarzschild constant density solution is physically unrealistic, the charged analogs, obtained in [56,[102][103][104], and the charged analog of the Matese and Whitman solution, obtained in [105], may be relevant in the description of self-bound electrically charged strange quark stars. Charged analogs of the Tolman IV and VII models [106][107][108]), as the neutral ones, exhibit the physical features required for the construction of a physically realizable relativistic compact stellar structure.…”
Section: Introductionmentioning
confidence: 98%
“…For a monotonically decreasing function f r of radius r, the expression for charge, density and pressure can be written as (Bijalwan and Gupta 2008) …”
Section: Field Equations and Boundary Conditionsmentioning
confidence: 99%
“…Thus, regular charged perfect fluid solutions joining smoothly with the ReissnerNordstrom metric at the pressure free interface are found important in many ways. As very few physically valid exact solutions (for charged analogues of Schwarzschild interior solution) are available in literature (Bijalwan and Gupta 2008) so the approach followed by them viz. to fulfill most of the physical requirements before the solutions are actually sought, seems to be more disciplined one.…”
Section: Introductionmentioning
confidence: 99%
See 1 more Smart Citation
“…Many of the authors electrified the well known exact solutions as seed solutions e.g Kuchowicz solutions (1968) by Nduka (1977), Tolman solution (1939 by Cataldo and Mitskievic (1992), Durgapal and Fuloria solution (1985) by Maurya (2010a), Heintzmann's (1969) solution by Pant et al (2010b), Durgapal (1982 by Gupta and Maurya (2010b, 2011), Kuchowicz solutions (1967 by Gupta and Maurya (2010c), Buchdahl (1959) by Gupta and Kumar (2005), Bijalwan and Gupta (2008), Bijalwan (2011bBijalwan ( , 2011c etc. These coupled solutions completely describe interior of the Neutron star or pulsar with charge matter.…”
Section: Introductionmentioning
confidence: 99%