One-dimensional self-consistent kinetic models may describe some states of intense charged particle beams. In the collisionless approximation, which is appropriate for the short current pulse duration, the kinetic distribution function may be built as a function of the motion integrals. Two situations are considered corresponding to the wide charged particle flux with the sharp front and to the sheet continuous beam freely propagating in space. In both cases, one-dimensional Vlasov equation solutions are shown to exist, which are based on algebraic functions of the motion invariants.