The photodissociation dynamics of the acetone S2 (n, 3s) Rydberg state excited at 195 nm has been studied by using femtosecond pump-probe mass-selected multiphoton ionization spectroscopy. For the first time, the temporal evolutions of the initial state, intermediates, and methyl products were simultaneously measured and analyzed for this reaction to elucidate the complex dynamics. Two mechanisms were considered: (1) the commonly accepted mechanism in which the primary dissociation occurs on the first triplet-state surface, and (2) the recently proposed mechanism in which the primary dissociation takes place on the first singlet-excited-state surface. Our results and analyses supported the validity of the new mechanism. On the other hand, the conventional mechanism was found to be inadequate to describe the observed dynamics. The temporal evolution of methyl products arising from the secondary dissociation of hot acetyl intermediates exhibited a very complex behavior that can be ascribed to the combination of a nonuniform initial vibrational distribution and the competition between dissociation and slow intramolecular vibrational redistribution.