Novel
substituted 2,3-dihydrobenzofuran-7-carboxamide (DHBF-7-carboxamide)
and 2,3-dihydrobenzofuran-3(2H)-one-7-carboxamide
(DHBF-3-one-7-carboxamide) derivatives were synthesized and evaluated
as inhibitors of poly(ADP-ribose)polymerase-1 (PARP-1). A structure-based
design strategy resulted in lead compound 3 (DHBF-7-carboxamide;
IC50 = 9.45 μM). To facilitate synthetically feasible
derivatives, an alternative core was designed, DHBF-3-one-7-carboxamide
(36, IC50 = 16.2 μM). The electrophilic
2-position of this scaffold was accessible for extended modifications.
Substituted benzylidene derivatives at the 2-position were found to
be the most potent, with 3′,4′-dihydroxybenzylidene 58 (IC50 = 0.531 μM) showing a 30-fold improvement
in potency. Various heterocycles attached at the 4′-hydroxyl/4′-amino
of the benzylidene moiety resulted in significant improvement in inhibition
of PARP-1 activity (e.g., compounds 66–68, 70, 72, and 73; IC50 values from 0.718 to 0.079 μM). Compound 66 showed
selective cytotoxicity in BRCA2-deficient DT40 cells.
Crystal structures of three inhibitors (compounds (−)-13c, 59, and 65) bound to
a multidomain PARP-1 structure were obtained, providing insights into
further development of these inhibitors.