Considering the significance of progesterone receptor (PR) modulators, the present study is explored to envisage the biophoric signals for binding to selective PR subtype-A using ligand-based quantitative structure activity relationship (QSAR) and pharmacophore space modeling studies on nonsteroidal substituted quinoline and cyclocymopol monomethyl ether derivatives. Consensus QSAR models (Training set (Tr): nTr=100, R2pred=0.702; test set (Ts): nTs=30, R2pred=0.705, R2m=0.635; validation set (Vs): nVs=40, R2pred=0.715, R2m=0.680) suggest that molecular topology, atomic polarizability and electronegativity, atomic mass and van der Waals volume of the ligands have influence on the presence of functional atoms (F, Cl, N and O) and consequently contribute significant relations on ligand binding affinity. Receptor independent space modeling study (Tr: nTr=26, Q2=0.927; Ts: nTs=60, R2pred=0.613, R2m=0.545; Vs: nVs=84, R2pred=0.611, R2m=0.507) indicates the importance of aromatic ring, hydrogen bond donor, molecular hydrophobicity and steric influence for receptor binding. The structure-function characterization is adjudged with the receptor-based docking study, explaining the significance of the mapped molecular attributes for ligand-receptor interaction in the catalytic cleft of PR-A.