2023
DOI: 10.1017/s0305004123000567
|View full text |Cite
|
Sign up to set email alerts
|

Nonvarying, affine and extremal geometry of strata of differentials

DAWEI CHEN

Abstract: We prove that the nonvarying strata of abelian and quadratic differentials in low genus have trivial tautological rings and are affine varieties. We also prove that strata of k-differentials of infinite area are affine varieties for all k. Vanishing of homology in degree higher than the complex dimension follows as a consequence for these affine strata. Moreover we prove that the stratification of the Hodge bundle for abelian and quadratic differentials of finite area is extremal in the sense that merging two … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 26 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?