Nucleoli are the sites where synthesis of rRNA and ribosomal assembly take place. Along with these "traditional" roles, the nucleolus controls cellular physiology and homeostasis. The cellular and molecular alterations associated with impaired nucleolar activity ("nucleolar stress") have just started to be systematically explored in the nervous system taking advantage of newly available animal models lacking rRNA synthesis in specific neurons. These studies showed that nucleolar function is necessary for neuronal survival and that its modality of action differs between and within cell types. Nucleolar function is also crucial in pathology as it controls mitochondrial activity and critical stress signaling pathways mimicking hallmarks of human neurodegenerative diseases. This mini-review will focus on the modes of action of nucleolar stress and discuss how the manipulation of nucleolar activity might underscore novel strategies to extend neuronal function and survival.Keywords rRNA . Nucleolus . Cellular stress . Neurodegeneration . Mouse models
Non-traditional roles of the nucleolus under physiological conditionsNucleoli are non-membrane-bound structures within the nucleus where ribosomal RNA (rRNA) genes are transcribed.These atypical cellular organelles consist of three major compartments with specific functions: (1) fibrillar centers (FC, pre-rRNA synthesis), (2) dense fibrillar components (DFC, pre-RNA processing), and (3) granular components (GC, ribosome assembly). Their organization allows hosting a number of proteins and RNAs with an important role in various cellular processes. Thus the perturbation of nucleolar dynamic assembly exerts profound effects on several cellular functions [1]. A detailed description of nucleolar morphology and organization has been provided elsewhere [1,2]. Here we focus on the mechanisms by which nucleolar activity may regulate neuronal function and survival and contribute especially to neurodegenerative diseases.One intriguing mechanism to control embryonic development, differentiation, and survival is the nucleolar shuttling of cell cycle regulators and transcription factors dictating cell lineage to the nucleoplasm [1]. Moreover, rRNA repression seems required for the execution of differentiation programs. For example, during the embryonic development, transcription of rRNA genes is repressed by lineage-commitment transcription factors turning off the pluripotency genes [3]. During neural lineage commitment there is no direct evidence that rRNA transcription is inhibited; it is likely, however, that mechanisms involving nucleolar dynamics could be in play. For example in brain and retina the levels of the nucleolar protein nucleostemin, a controller of pre-rRNA processing, are rapidly reduced before cell cycle exit and neural differentiation [4,5], suggesting that rRNA biosynthesis may have a regulatory effect on neurogenesis.However, the major regulatory function associated with altered dynamics of nucleolar proteins is connected to the stress response and involv...