Procedings of the British Machine Vision Conference 2011 2011
DOI: 10.5244/c.25.98
|View full text |Cite
|
Sign up to set email alerts
|

noRANSAC for fundamental matrix estimation

Abstract: The estimation of the fundamental matrix from a set of corresponding points is a relevant topic in epipolar stereo geometry [10]. Due to the high amount of outliers between the matches, RANSAC-based approaches [7,13,29] have been used to obtain the fundamental matrix. In this paper two new contributes are presented: a new normalized epipolar error measure which takes into account the shape of the features used as matches [17] and a new strategy to compare fundamental matrices. The proposed error measure gives … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1

Citation Types

0
3
0

Year Published

2013
2013
2024
2024

Publication Types

Select...
3
2

Relationship

1
4

Authors

Journals

citations
Cited by 5 publications
(3 citation statements)
references
References 31 publications
0
3
0
Order By: Relevance
“…In case the evaluation is more stressed towards the matching coverage, combining epipolar geometry with local information collected by sparse hand-taken correspondences to define the GT can be a plausible approach [7]. An alternative metric in case the evaluation is more focused on the precision of the matches can be to use as a proxy to the effective matching error the error on the camera poses [8], also in the case of planar scenes [48], or the error on the fundamental matrix relating two images [9], [49].…”
Section: B Image Matching Benchmarksmentioning
confidence: 99%
See 2 more Smart Citations
“…In case the evaluation is more stressed towards the matching coverage, combining epipolar geometry with local information collected by sparse hand-taken correspondences to define the GT can be a plausible approach [7]. An alternative metric in case the evaluation is more focused on the precision of the matches can be to use as a proxy to the effective matching error the error on the camera poses [8], also in the case of planar scenes [48], or the error on the fundamental matrix relating two images [9], [49].…”
Section: B Image Matching Benchmarksmentioning
confidence: 99%
“…In the case of non-planar scenes, E η 12 compares the pointwise error of the fundamental matrix F computed from the matches against the GT fundamental matrix F GT , and likewise E η 21 . Specifically, the average is computed defining the error on a valid point x ∈ I 1 as the minimum area given by intersecting the two semi-planes on I 2 defined by the epipolar lines F x and F GT x, as done in [9] but normalizing the area by the image diagonal to get a linear measure. The final accuracy over all the image pairs is aggregated as for Eq.…”
Section: Error Metricsmentioning
confidence: 99%
See 1 more Smart Citation