In this paper, we first introduce some new classes of weighted amalgam spaces. Then, we give the weighted strong-type and weak-type estimates for fractional integral operators Iγ on these new function spaces. Furthermore, the weighted strong-type estimate and endpoint estimate of linear commutators b,Iγ generated by b and Iγ are established as well. In addition, we are going to study related problems about two-weight, weak-type inequalities for Iγ and b,Iγ on the weighted amalgam spaces and give some results. Based on these results and pointwise domination, we can prove norm inequalities involving fractional maximal operator Mγ and generalized fractional integrals ℒ−γ/2 in the context of weighted amalgam spaces, where 0<γ<n and L is the infinitesimal generator of an analytic semigroup on L2Rn with Gaussian kernel bounds.