Let Q = (qn) ∞ n=1 be a sequence of bases with qi ≥ 2. In the case when the qi are slowly growing and satisfy some additional weak conditions, we provide a construction of a number whose Q-Cantor series expansion is both Q-normal and Q-distribution normal. Moreover, this construction will result in a computable number provided we have some additional conditions on the computability of Q, and from this construction we can provide computable constructions of numbers with atypical normality properties.