Background/Aim
London Protocol (LP) and Classification allied to high-resolution manometry (HRM) technological evolution has updated and enhanced the diagnostic armamentarium in anorectal disorders. This study aims to evaluate LP reproducibility under water-perfused HRM, provide normal data and new parameters based on 3D and healthy comparison studies under perfusional HRM.
Methods
Fifty healthy (25 F) underwent water-perfused 36 channel HRM based on LP at resting, squeeze, cough, push, and rectal sensory. Additional 3D manometric parameters were: pressure-volume (PV) 104mmHg2.cm (resting, short and long squeeze, cough); highest and lowest pressure asymmetry (resting, short squeeze, and cough). Complementary parameters (CP) were: resting (mean pressure, functional anal canal length); short squeeze (mean and maximum absolute squeeze pressure), endurance (fatigue rate, fatigue rate index, capacity to sustain); cough (anorectal gradient pressure); push (rectum-anal gradient pressure, anal canal relaxation percent); recto-anal inhibitory reflex (anal canal relaxation percent).
Results
No difference to genders: resting (LP, CP, and 3D); short squeeze (highest pressure asymmetry); endurance (CP); cough (CP, highest and lowest pressure asymmetry); push (gradient pressure); rectal sensory. Higher pressure in men: short squeeze (maximum incremental, absolute, and mean pressure, PV, lowest pressure asymmetry); long squeeze (PV); cough (anal canal and rectum maximum pressure, anal canal PV); push (anal canal and rectum maximum pressure). Anal canal relaxation was higher in women (push).
Conclusions
LP reproducibility is feasible under water-perfused HRM, and comparative studies could bring similarity to dataset expansion. Novel 3D parameters need further studies with healthy and larger data to be validated and for disease comparisons.
Key points
• London Protocol and Classification allied with the technological evolution of HRM (software and probes) has refined the diagnostic armamentarium in anorectal disorders.
• Novel 3D and deepening the analysis of manometric parameters before the London Classification as a contributory diagnostic tool.
• Comparison of healthy volunteers according to the London Protocol under a perfusional high-resolution system could establish equivalence points.