The surface plasmon resonance tracking over metal surfaces is a well-established, commercially available, biochemical quantification tool primarily applied in research. The utilization of such a tool is, however, constrained to highly specialized industries, capable of justifying the human and instrumental resource investments required by the characterization method. We have proposed to expand the field of application of this biosensing approach by redesigning this method through the integration and miniaturization within a semiconductor platform. Uncollimated and broadband emission from a light-emitting semiconductor is employed to couple a continuum of surface plasmon modes over a metal-dielectric architecture interfaced with a GaAs-AlGaAs substrate. A tensor version of rigorous coupled wave theory is employed to optimize the various fabrication specifications and to predict the light scatterings over a wide range of variables. We then present a hyperspectral characterization microscope capable of directly mapping the dispersion relation of scattered light, including diffracted surface plasmons, as an intensity distribution versus photon energy and surface wavevectors. Measurements carried out in a buffered solution demonstrate the accurate description of the uncollimated and broadband surface plasmon states. Finally, we introduce a simplified method of dispersion mapping, in which quasi-conic cross-sections of the light's scattering can be acquired directly, thus monitoring surficial responses in as fast as 1.2 s. This is over 300 times faster than required by implementing full dispersion mapping. While compromising on the volume of collected information, this method, combined with the solid-state integration of the platform, shows great promise for the fast detection of biochemical agents. Keywords: biosensors; light scattering; optical devices; semiconductors; surface plasmon resonance INTRODUCTION Surface plasmon resonance (SPR) is a well-established and easy-toinduce phenomenon enabling the study of surficial optical properties, such as those related to the alterations of the local dielectric constants. The resonance tracking of the surface plasmon (SP) coupling has already found a wide range of applications, especially in the field of biochemical analysis, where SPR systems are employed to determine the concentration of molecules and kinetics of intermolecular interactions.1 Using proper stabilization and correction procedures, it has been demonstrated that the SPR technique can be used to detect biochemical fluctuations inducing refractive index changes lower than 10 28 refractive index unit. 2 The same approach can also be employed for the spatial imaging of binding events.3 However, the SPR technology has remained in the realm of trained professionals, in academic laboratories and within specialized industries, requiring relatively large space, capital investment and the support of qualified personnel.