Abstract. This paper presents a series of new results on the asymptotic stability of discrete-time fractional difference (FD) state space systems and their finite-memory approximations called finite FD (FFD) and normalized FFD (NFFD) systems. In Part I of the paper, new necessary and sufficient stability conditions have been given in a unified form for FD, FFD and NFFD-based systems. Part II offers a new, simple, ultimate stability criterion for FD-based systems. This gives rise to the introduction of new definitions of the so-called f -poles and f -zeros for FD-based systems, which are used in the closed-loop stability analysis for FD-based systems and, approximately, for FFD/NFFD-based ones.