We consider the following coupled fractional Schrödinger system: $$ \textstyle\begin{cases} (-\Delta )^{s}u+\lambda _{1}u=\mu _{1} \vert u \vert ^{2p-2}u+ \beta \vert v \vert ^{p} \vert u \vert ^{p-2}u, \\ (-\Delta )^{s}v+\lambda _{2}v=\mu _{2} \vert v \vert ^{2p-2}v+\beta \vert u \vert ^{p} \vert v \vert ^{p-2}v \end{cases}\displaystyle \quad \text{in } {\mathbb{R}^{N}}, $$
{
(
−
Δ
)
s
u
+
λ
1
u
=
μ
1
|
u
|
2
p
−
2
u
+
β
|
v
|
p
|
u
|
p
−
2
u
,
(
−
Δ
)
s
v
+
λ
2
v
=
μ
2
|
v
|
2
p
−
2
v
+
β
|
u
|
p
|
v
|
p
−
2
v
in
R
N
,
with $0< s<1$
0
<
s
<
1
, $2s< N\le 4s$
2
s
<
N
≤
4
s
and $1+\frac{2s}{N}< p<\frac{N}{N-2s}$
1
+
2
s
N
<
p
<
N
N
−
2
s
, under the following constraint: $$ \int _{\mathbb{R}^{N}} \vert u \vert ^{2}\,dx=a_{1}^{2} \quad \text{and}\quad \int _{ \mathbb{R}^{N}} \vert v \vert ^{2}\,dx=a_{2}^{2}. $$
∫
R
N
|
u
|
2
d
x
=
a
1
2
and
∫
R
N
|
v
|
2
d
x
=
a
2
2
.
Assuming that the parameters $\mu _{1}$
μ
1
, $\mu _{2}$
μ
2
, $a_{1}$
a
1
, $a_{2}$
a
2
are fixed quantities, we prove the existence of normalized solution for different ranges of the coupling parameter $\beta >0$
β
>
0
.