2023
DOI: 10.3934/era.2023191
|View full text |Cite
|
Sign up to set email alerts
|

Normalized solutions for the mixed dispersion nonlinear Schrödinger equations with four types of potentials and mass subcritical growth

Abstract: <abstract><p>This paper is devoted to considering the attainability of minimizers of the $ L^2 $-constraint variational problem</p> <p><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ m_{\gamma, a} = \inf \, \{J_{\gamma}(u):u\in H^2(\mathbb{R}^{N}), \int_{\mathbb{R}^{N}} \vert u\vert^2 dx = a^2 \} {, } $\end{document} </tex-math></disp-formula></p> <p>where</p> <p><disp-formula> <label/> <tex-math id=… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2025
2025
2025
2025

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 23 publications
0
0
0
Order By: Relevance