We study the cubic-quartic nonlinear Schrödinger equation (NLS) in two and three spatial dimension. This equation arises in the mean-field description of Bose-Einstein condensates with Lee-Huang-Yang correction. We first prove global existence of solutions in natural energy spaces which allow for the description of self-bound quantum droplets with vorticity. Existence of such droplets, described as central vortex states in 2D and 3D, is then proved using an approach via constrained energy minimizers. A natural connection to the NLS with repulsive inverse-square potential in 2D arises, leading to an orbital stability result under the corresponding flow.