Murine norovirus (MNV) infection results in a late translation shut-off, that is proposed to contribute to the attenuated and delayed innate immune response observed both in vitro and in vivo. Recently, we further demonstrated the activation of the eIF2α kinase GCN2 during MNV infection, which has been previously linked to immunomodulation and resistance to inflammatory signalling during metabolic stress. While viral infection is usually associated with activation of dsRNA binding pattern recognition receptor PKR, we hypothesised that the establishment of a metabolic stress in infected cells is a proviral event, exploited by MNV to promote replication through weakening the activation of the innate immune response. In this study, we used multi-omics approaches to characterise cellular responses during MNV replication. We demonstrate the activation of pathways related to the integrated stress response, a known driver of anti-inflammatory phenotypes in macrophages. In particular, MNV infection causes an amino acid imbalance that is associated with GCN2 and ATF2 signalling. Importantly, this reprogramming lacks the features of a typical innate immune response, with the ATF/CHOP target GDF15 contributing to the lack of antiviral responses. We propose that MNV-induced metabolic stress supports the establishment of host tolerance to viral replication and propagation.ImportanceDuring viral infection, host defences are typically characterised by the secretion of pro-inflammatory autocrine and paracrine cytokines, potentiation of the IFN response and induction of the anti-viral response via activation of JAK and Stat signalling. To avoid these and propagate viruses have evolved strategies to evade or counteract host sensing. In this study, we demonstrate that murine norovirus controls the antiviral response by activating a metabolic stress response that activates the amino acid response and impairs inflammatory signalling. This highlights novel tools in the viral countermeasures tool-kit, and demonstrates the importance of the currently poorly understood metabolic reprogramming occurring during viral infections.