Biochar, a carbon-rich, fine-grained residue obtained from pyrolysis of biomass, is known to improve soil conditions and to suppress infection by soilborne pathogens. However, its use as a soil amendment has received relatively little attention by the horticulture industry. Two 12-week experiments were conducted in a greenhouse to determine the potential of using biochar, produced from mixed conifers during conversion of wood to energy, as a soil amendment for highbush blueberry (Vaccinium hybrid ‘Legacy’). Plants in the first experiment were fertilized once a week with a complete fertilizer solution, whereas those the in the second experiment were fertilized once a month with a solution of ammonium sulfate. In both cases, the plants received the same amount of N in total and were grown in pots filled with unamended soil (sandy loam) or soil amended at rates of 10% or 20%, by volume, with biochar or a 4:1 mix of biochar and bokashi (biochar-bokashi). The bokashi was produced from fermented rice (Oryza sativa L.) bran and was added to increase nutrients in the amendment. Half of the plants in each soil treatment were inoculated with Phytophthora cinnamomi Rands, which causes root rot in blueberry. Although pH of the raw biochar was high (8.5), soil pH averaged 4.5 to 5.5 in each treatment. In the absence of P. cinnamomi, plants grown with 20% biochar or 10% or 20% biochar-bokashi had greater leaf area and 30% to 70% more total dry weight than those grown with 10% biochar or in unamended soil. Biochar also improved soil aggregation and increased root colonization by ericoid mycorrhizal fungi. The percentage of roots colonized by mycorrhizal fungi was 54% to 94% in plants grown with the amendments, but was ≤10% in those grown in unamended soil. Plants inoculated with P. cinnamomi were stunted and showed typical symptoms of root rot. Root infection by the pathogen was unaffected by biochar or biochar-bokashi and negated any growth benefits of the amendments. Overall, amending soil with biochar appears to be a promising means of promoting plant growth and mycorrhizal colonization in blueberry, but it may not suppress phytophthora root rot.