“…Machine learning identification of extant and fossil pollen at the species level has advanced significantly (Punyasena et al, 2012; Tcheng et al, 2016; Romero et al, 2020; White, 2020). Automated species identification of leaf images, in particular, is a well‐studied problem in computer vision (Im et al, 1998; Wu et al, 2007; Nam et al, 2008; Park et al, 2008; Caballero and Aranda, 2010; Bama et al, 2011; Hu et al, 2012; Laga et al, 2012; Larese et al, 2012; Mouine et al, 2012; Priya et al, 2012; Charters et al, 2014; Larese et al, 2014a, b; Jamil et al, 2015; Mata‐Montero and Carranza‐Rojas, 2015, 2016; Zhao et al, 2015; Grinblat et al, 2016; Larese and Granitto, 2016; Carranza‐Rojas, Mata‐Montero et al, 2018; Wäldchen and Mäder, 2018; Wäldchen et al, 2018; Almeida et al, 2020; Banerjee and Pamula, 2020; Bryson et al, 2020; Pryer et al, 2020; Soltis et al, 2020; Mukherjee et al, 2021; Zhou et al, 2021). However, there have been few efforts to unpack the diagnostic features revealed from AI for the benefit of botanists.…”