Background Microarray-based gene expression profiling has been widely used in biomedical research. Weighted gene co-expression network analysis (WGCNA) can link microarray data directly to clinical traits and to identify rules for predicting pathological stage and prognosis of disease, it has been found useful in many biological processes. Stroke is one of the most common diseases worldwide, yet molecular mechanisms of its pathogenesis are largely unknown. We aimed to construct gene co-expression networks to identify key modules and hub genes associated with the pathogenesis of stroke.Results In this study, we screened out the differentially expressed genes from gene microarray expression profiles, then constructed the free-scale gene co-expression networks to explore the associations between gene sets and clinical features, and to identify key modules and hub genes. Subsequently, functional enrichment and the receiver operating characteristic (ROC) curve analysis were performed. And the results show that a total of 11,747 most variant genes were used for co-expression network construction. Pink and yellow modules were found to be the most significantly related to stroke. Functional enrichment analysis showed that the pink module was mainly involved in regulation of neuron regeneration, and the repair of DNA damage, while the yellow module was mainly enriched in ion transport system dysfunction which were correlated with neuron death. A total of 8 hub genes (PRR11, NEDD9, Notch2, RUNX1-IT1, ANP32A-IT1, ASTN2, SAMHD1 and STIM1) were identified and validated at transcriptional levels (other datasets) and by existing literatures.Conclusions Eight hub genes (PRR11, NEDD9, Notch2, RUNX1-IT1, ANP32A-IT1, ASTN2, SAMHD1 and STIM1) may serve as biomarkers and therapeutic targets for precise diagnosis and treatment of stroke in the future.