Sensory systems constantly adapt their responses to the current environment. In hearing, adaptation may facilitate communication in noisy settings, a benefit frequently (but controversially) attributed to the medial olivocochlear reflex (MOCR) enhancing the neural representation of speech. Here, we show that human listeners ( = 14; five male) recognize more words presented monaurally in ipsilateral, contralateral, and bilateral noise when they are given some time to adapt to the noise. This finding challenges models and theories that claim that speech intelligibility in noise is invariant over time. In addition, we show that this adaptation to the noise occurs also for words processed to maintain the slow-amplitude modulations in speech (the envelope) disregarding the faster fluctuations (the temporal fine structure). This demonstrates that noise adaptation reflects an enhancement of amplitude modulation speech cues and is unaffected by temporal fine structure cues. Last, we show that cochlear implant users ( = 7; four male) show normal monaural adaptation to ipsilateral noise. Because the electrical stimulation delivered by cochlear implants is independent from the MOCR, this demonstrates that noise adaptation does not require the MOCR. We argue that noise adaptation probably reflects adaptation of the dynamic range of auditory neurons to the noise level statistics. People find it easier to understand speech in noisy environments when they are given some time to adapt to the noise. This benefit is frequently but controversially attributed to the medial olivocochlear efferent reflex enhancing the representation of speech cues in the auditory nerve. Here, we show that the adaptation to noise reflects an enhancement of the slow fluctuations in amplitude over time that are present in speech. In addition, we show that adaptation to noise for cochlear implant users is not statistically different from that for listeners with normal hearing. Because the electrical stimulation delivered by cochlear implants is independent from the medial olivocochlear efferent reflex, this demonstrates that adaptation to noise does not require this reflex.