A new continuous soluble particle collector (PC) that does not use steam is described. Preceded by a denuder and interfaced with an ion chromatograph, this compact collector (3 in. o.d., approximately 5 in. total height) permits collection and continuous extraction of soluble components in atmospheric particulate matter. The PC is mounted atop a parallel plate wetted denuder for removal of soluble gases. The soluble gas denuded air enters the PC through an inlet. One version of the PC contained an integral cyclone-like inlet. For this device, penetration of particles as a function of size was characterized. In the simpler design, the sampled air enters the PC through a nozzle, and deionized water flows through a capillary tube placed close to the exit side of the nozzle by Venturi action or is forcibly pumped. Some growth of the aerosol occurs in the highly humid mist-chamber environment, but the dominant aerosol capture mechanism involves capture by the water film that forms on the hydrophobic PTFE membrane filter that constitutes the top of the PC and the airflow exit. Water drops coalesce on the filter and fall below into a purpose-machined cavity equipped with a liquid sensor. The water and the dissolved constituents are aspirated by a pump onto serial cation and anion preconcentrator columns. NH4+ captured by the cation preconcentrator is eluted with NaOH and is passed across an asymmetric membrane device. NH3 diffuses from the alkaline donor stream into a deionized water flowing countercurrent; the conductivity of the latter provides a measure of ammonium. The anions on the anion preconcentrator column are eluted and measured by a fully automated ion chromatography system. The total system thus provides automated semicontinuous measurement of soluble anions and ammonium. With a 15 min analytical cycle and a sampling rate of 5 L/min, the limit of detection (LOD) for ammonium is 8 ng/m3 and those for sulfate, nitrate, and oxalate are < or = 0.1 ng/m3. The system has been extensively field tested.