An overview of some analytical approaches to the computation of the structural and thermodynamic properties of single component and multicomponent hard-sphere fluids is provided. For the structural properties, they yield a thermodynamically consistent formulation, thus improving and extending the known analytical results of the Percus-Yevick theory. Approximate expressions for the contact values of the radial distribution functions and the corresponding analytical equations of state are also discussed. Extensions of this methodology to related systems, such as sticky hard spheres and squarewell fluids, as well as its use in connection with the perturbation theory of fluids are briefly addressed.