When a cylindrical object penetrates granular matter near a vertical boundary, it experiences two effects: its center of mass moves horizontally away from the wall, and it rotates around its symmetry axis. Here we show experimentally that, if two identical intruders instead of one are released side-by-side near the wall, both effects are also detected. However, unexpected phenomena appear due to a cooperative dynamics between the intruders. The net horizontal distance traveled by the common center of mass of the twin intruders is much larger than that traveled by one intruder released at the same initial distance from the wall, and the rotation is also larger. The experimental results are well described by the Discrete Element Method, which reveals a further unexpected phenomenon: when four intruders are released as a column near a wall, they penetrate like a chain that "bends away" from the wall so its lower end is very strongly repelled away from it.