Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
BackgroundMajor depression is a widely used diagnostic category but there is increasing dissatisfaction with its performance. The diathesis-stress model is an alternative approach that does not require the (sometimes arbitrary) imposition of categories onto the spectrum of depressive morbidity. However, application of this model has not been well explored and its consistency with available epidemiologic data is uncertain.MethodsSimulation provides an opportunity to explore these issues. In this study, a simulation model based on an intuitive representation of diathesis-stress interaction was developed. Both diathesis and stress were represented using continuous distributions, without categorization. A diagnostic threshold was then applied to the simulation output to create nominal categories and to explore their consistency with available information.ResultsAn apparently complex epidemiologic pattern emerged from the diathesis-stress interaction when thresholds were applied: incidence was time dependent, recurrence depended on the number of past episodes, baseline symptoms were associated with an increased risk of subsequent episodes and the remission rate declined with increasing episode duration.ConclusionsA diathesis-stress conceptualization coupled with application of a threshold-based diagnostic definition may explain several of the apparent complexities of major depression epidemiology. Some of these complexities may be artifacts of the nominal diagnostic approach. These observations should encourage an empirical exploration of whether diathesis-stress interactions provide a more parsimonious framework for understanding depression than current approaches.
BackgroundMajor depression is a widely used diagnostic category but there is increasing dissatisfaction with its performance. The diathesis-stress model is an alternative approach that does not require the (sometimes arbitrary) imposition of categories onto the spectrum of depressive morbidity. However, application of this model has not been well explored and its consistency with available epidemiologic data is uncertain.MethodsSimulation provides an opportunity to explore these issues. In this study, a simulation model based on an intuitive representation of diathesis-stress interaction was developed. Both diathesis and stress were represented using continuous distributions, without categorization. A diagnostic threshold was then applied to the simulation output to create nominal categories and to explore their consistency with available information.ResultsAn apparently complex epidemiologic pattern emerged from the diathesis-stress interaction when thresholds were applied: incidence was time dependent, recurrence depended on the number of past episodes, baseline symptoms were associated with an increased risk of subsequent episodes and the remission rate declined with increasing episode duration.ConclusionsA diathesis-stress conceptualization coupled with application of a threshold-based diagnostic definition may explain several of the apparent complexities of major depression epidemiology. Some of these complexities may be artifacts of the nominal diagnostic approach. These observations should encourage an empirical exploration of whether diathesis-stress interactions provide a more parsimonious framework for understanding depression than current approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.