Lipoxins and aspirin-triggered 15-
epi
-lipoxins (ATL) are counter-regulatory eicosanoids with potent antiinflammatory actions. Oral efficacy and mechanism of action of ZK-192, a β-oxidation-resistant 3-oxa-ATL analog, were examined in trinitrobenzenesulphonate (TNBS)-induced colitis. When dosed orally once daily, 300 and 1,000 μg/kg ZK-192 markedly attenuated TNBS colitis in rodents both in preventive and therapeutic regimens. ZK-192 attenuated weight loss, macroscopic and histologic colon injury, mucosal neutrophil infiltration, and colon wall thickening. ZK-192 was as effective as 3–10 mg/kg oral prednisolone. ZK-192 decreased mucosal mRNA levels for several inflammatory mediators: inducible nitric oxide synthase, cyclooxygenase 2, and macrophage inflammatory protein 2. ZK-192 also decreased mucosal mRNA and protein levels of T helper 1 effector cytokines: tumor necrosis factor α, IL-2, and IFN-γ. Systemic levels of these cytokines were also dramatically attenuated. CD3/CD28-mediated costimulation of T helper 1 effector cytokine release in lamina propria mononuclear cells was markedly inhibited by ZK-192
ex vivo
and
in vitro
. ZK-192 also prevented colitis in lymphocyte-deficient severe combined immunodeficient mice, with ≈75% inhibition of mucosal tumor necrosis factor α and IL-2 levels. The results are further evidence that innate immune cells function as triggers for hapten-induced colitis. The combined antiinflammatory and immunomodulatory effects of ZK-192 in TNBS colitis suggest that ATL analogs may be an attractive oral treatment approach for inflammatory bowel diseases.