2021
DOI: 10.1088/1742-6596/1848/1/012160
|View full text |Cite
|
Sign up to set email alerts
|

Novel accelerated Stochastic Progressive Photon Mapping rendering with neural network

Abstract: Recently, deep learning-based approaches have led to dramatic improvements for Monte Carlo rendering at the low sampling rate. Most of these approaches are aimed at path tracing. However, they are not suitable for photon mapping. In this paper, we develop a novel accelerate stochastic progressive photon mapping approaches with neural network. First, our framework utilizes the particle-based rendering and focuses on photon density estimation. We train a neural network to predict a kernel function to aggregate p… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 6 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?