Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Utilizing deep features from electroencephalography (EEG) data for emotional music composition provides a novel approach for creating personalized and emotionally rich music. Compared to textual data, converting continuous EEG and music data into discrete units presents significant challenges, particularly the lack of a clear and fixed vocabulary for standardizing EEG and audio data. The lack of this standard makes the mapping relationship between EEG signals and musical elements (such as rhythm, melody, and emotion) blurry and complex. Therefore, we propose a method of using clustering to create discrete representations and using the Transformer model to reverse mapping relationships. Specifically, the model uses clustering labels to segment signals and independently encodes EEG and emotional music data to construct a vocabulary, thereby achieving discrete representation. A time series dictionary was developed using clustering algorithms, which more effectively captures and utilizes the temporal and structural relationships between EEG and audio data. In response to the insensitivity to temporal information in heterogeneous data, we adopted a multi head attention mechanism and positional encoding technology to enable the model to focus on information in different subspaces, thereby enhancing the understanding of the complex internal structure of EEG and audio data. In addition, to address the mismatch between local and global information in emotion driven music generation, we introduce an audio masking prediction loss learning method. Our method generates music that Hits@20 On the indicator, a performance of 68.19% was achieved, which improved the score by 4.9% compared to other methods, indicating the effectiveness of this method.
Utilizing deep features from electroencephalography (EEG) data for emotional music composition provides a novel approach for creating personalized and emotionally rich music. Compared to textual data, converting continuous EEG and music data into discrete units presents significant challenges, particularly the lack of a clear and fixed vocabulary for standardizing EEG and audio data. The lack of this standard makes the mapping relationship between EEG signals and musical elements (such as rhythm, melody, and emotion) blurry and complex. Therefore, we propose a method of using clustering to create discrete representations and using the Transformer model to reverse mapping relationships. Specifically, the model uses clustering labels to segment signals and independently encodes EEG and emotional music data to construct a vocabulary, thereby achieving discrete representation. A time series dictionary was developed using clustering algorithms, which more effectively captures and utilizes the temporal and structural relationships between EEG and audio data. In response to the insensitivity to temporal information in heterogeneous data, we adopted a multi head attention mechanism and positional encoding technology to enable the model to focus on information in different subspaces, thereby enhancing the understanding of the complex internal structure of EEG and audio data. In addition, to address the mismatch between local and global information in emotion driven music generation, we introduce an audio masking prediction loss learning method. Our method generates music that Hits@20 On the indicator, a performance of 68.19% was achieved, which improved the score by 4.9% compared to other methods, indicating the effectiveness of this method.
The perception and recognition of objects around us empower environmental interaction. Harnessing the brain’s signals to achieve this objective has consistently posed difficulties. Researchers are exploring whether the poor accuracy in this field is a result of the design of the temporal stimulation (block versus rapid event) or the inherent complexity of electroencephalogram (EEG) signals. Decoding perceptive signal responses in subjects has become increasingly complex due to high noise levels and the complex nature of brain activities. EEG signals have high temporal resolution and are non-stationary signals, i.e., their mean and variance vary overtime. This study aims to develop a deep learning model for the decoding of subjects’ responses to rapid-event visual stimuli and highlights the major factors that contribute to low accuracy in the EEG visual classification task.The proposed multi-class, multi-channel model integrates feature fusion to handle complex, non-stationary signals. This model is applied to the largest publicly available EEG dataset for visual classification consisting of 40 object classes, with 1000 images in each class. Contemporary state-of-the-art studies in this area investigating a large number of object classes have achieved a maximum accuracy of 17.6%. In contrast, our approach, which integrates Multi-Class, Multi-Channel Feature Fusion (MCCFF), achieves a classification accuracy of 33.17% for 40 classes. These results demonstrate the potential of EEG signals in advancing EEG visual classification and offering potential for future applications in visual machine models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.