It has been postulated that sex pheromones, in addition to their role in mate recognition and/or finding, may also serve a role in assessment of mate quality. For this, a sex pheromone must give honest information about a signaler's quality, with honesty ensured by a direct metabolic or indirect fitness cost to the signaler. Using a stable isotope tracer-tracee method, we characterized the nutrient pools that fuel sex pheromone production in females of the moth Heliothis virescens, as well as the relative importance of larval-and adultacquired nutrients to this process. Females used three pools for de novo biosynthesis of sex pheromone, hemolymph trehalose, glycogen (via trehalose) and fat, and produced ca. 25% of pheromone directly from stored ( previously synthesized) precursor fatty acids. Pheromone was produced roughly equally from carbohydrate and fat. Adult feeding was very important for pheromone biosynthesis, with a maximum of 65% of de novo biosynthesized pheromone produced from a single adult feed (carbohydrate). Although these nutrient pools are shared with other reproductive physiologies, notably oocyte production, it is unlikely that pheromone production imposes a significant metabolic cost on females, because (i) the amount of nutrients used for pheromone production is negligible compared with that available, (ii) the hemolymph trehalose pool is readily replaceable throughout the adult life, and (iii) in mated females, carbohydrate shortages result in reduced allocation to pheromone.