A non-motile, Gram-staining-negative, orange-pigmented bacterium called herbae pc1-10T was discovered in Tibet in the soil around Pyrola calliantha H. Andres’ roots. The isolate thrived in the temperature range of 10–30 °C (optimal, 25 °C), pH range of 5.0–9.0 (optimum, pH = 6.0), and the NaCl concentration range of 0–1.8% (optimal, 0%). The DNA G+C content of the novel strain was 37.94 mol%. It showed the function of dissolving organophosphorus, acquiring iron from the environment by siderophore and producing indole acetic acid. Moreover, the genome of strain herbae pc1-10T harbors two antibiotic resistance genes (IND-4 and AdeF) encoding a β-lactamase, and the membrane fusion protein of the multidrug efflux complex AdeFGH; antibiotic-resistance-related proteins were detected using the Shotgun proteomics technology. The OrthoANIu values between strains Chryseobacterium herbae pc1-10T; Chryseobacterium oleae CT348T; Chryseobacterium kwangjuense KJ1R5T; and Chryseobacterium vrystaatense R-23566T were 90.94%, 82.96%, and 85.19%, respectively. The in silico DDH values between strains herbae pc1-10T; C. oleae CT348T; C. kwangjuense KJ1R5T; and C. vrystaatense R-23566T were 41.7%, 26.6%, and 29.7%, respectively. Chryseobacterium oleae, Chryseobacterium vrystaatense, and Chryseobacterium kwangjuense, which had 16S rRNA gene sequence similarity scores of 97.80%, 97.52%, and 96.75%, respectively, were its closest phylogenetic relatives. Chryseobacterium herbae sp. nov. is proposed as the designation for the strain herbae pc1-10T (=GDMCC 1.3255 = JCM 35711), which represented a type species based on genotypic and morphological characteristics. This study provides deep knowledge of a Chryseobacterium herbae characteristic description and urges the need for further genomic studies on microorganisms living in alpine ecosystems, especially around medicinal plants.