The world's perennial need for energy and microelectronic miniaturization brings with it a broad set of technological and scientific challenges. Materials characterized by precise microstructural architectures based on fractal analysis and ranging in size down to nano scale represent an important avenue for finding novel solutions. Deep materials structure hierarchies of this type open new possibilities in capacity according to the Heywang model, especially when extended by a fractals approach and intergranular relationships supported and recognized by their fractal nature. These developments are opening new frontiers in microelectronics miniaturization. They build on early fractal applications that were used as tools in miniaturization research and also provided application perspectives for diverse energy technologies. In other words, fractals, as a crucial concept of modern theoreticalexperimental physics and materials sciences, are tightly linked to higher integration processes and microelectronics miniaturization. They also hold potential for meeting the energy exploitation challenge. In this research context, for the first time we characteristics -for example, fractal dimensions and final properties of nextgeneration fractal microelectronics.